
One Health 
Connecting Humans, Animals and the Environment 

 

Matrix models of population dynamics  
Populations are dynamic. They are influenced by different incidents, like for example 

birth and death. An illness can also change the number of individuals in a population. 

But how do we model a dynamic population? Let us examine this question for a One 

Health approach. 

Populations are dynamic 

The phenomenon of infectious disease in populations is essentially a dynamic process 

at all levels. The susceptible host population is continuously changing through events 

such as birth, immigration, emigration and death. The parasite population is growing in 

the host, destroyed by the immune system or remains at low densities in reservoir 

hosts. The sum of all events may be expressed as a pool or a compartment, which is 

presented here with the example of a host population (see image one). The size of this 

compartment may be rising, declining, or oscillating. Even if the total size is stable, it 

may be highly dynamic. The above processes occur independently but simultaneously. 

They can be expressed in terms of the total population per time unit, ie as annual or 

instantaneous per capita birth rate 𝑏 or annual per capita mortality rate 𝑚. These rates 

themselves may be constant or dynamic. Populations may increase or decrease by 

constant rates of change. 

Image one: simple population flowchart 
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Population dynamics can be modeled 

The dynamics of populations can be quantified as deterministic or stochastic 

processes. One could argue that models are always imperfect because of the 

complexity of nature. Nevertheless partial processes may very well be modeled with 

considerable precision. At best, models are aids to thought or frameworks for 

decision-making. It is essential that we properly identify the process we want to 

describe. For this we should establish its various elements as a flow chart (see image 

one). The basic rule is to ‘model what we can count’. For every countable item we draw 

a box. Arrows are used to connect compartments and indicate the direction of specific 

transitions such as birth, death, or infection. The resulting flow chart may be 

translated into mathematical equations. As a first step, an equation is written for 

every compartment. 

Image two: the isolated population P  
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Continuing with our first example, in image two we again describe the flow chart from 

image one, this time assuming the population is isolated and neither immigration nor 

emigration occurs. If we multiply the per capita rates with the population size, we 

obtain net birth rates 𝑏𝑃	or net mortality rates 𝑚𝑃. If the chosen time interval 

approaches zero, the dynamic of the total population can be expressed as a derivative 
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. The instantaneous rate of population change – which is proportional to the total 

population size (see equation one) or more formally – can be written as a differential 

equation (see equation two). The differential 
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 is the slope of the population function 

𝑃(𝑡)over time: 

𝑑𝑃
𝑑𝑡 ≈ 𝑃 
Equation one  

𝑑𝑃
𝑑𝑡 = +𝑏𝑃 −𝑚𝑃	 → 	

𝑑𝑃
𝑑𝑡 = (𝑏 − 𝑚)𝑃 

Equation two 



Equation two describes the flow chart in image two but gives us no further 

information on the size of the population at a given time. Thus, we need to express the 

relationship in terms of the total population 𝑃 depending on birth and mortality. This 

can be achieved by an analytical solution of equation two, assuming that 𝑏 and 𝑚	are 

constant. 

𝑑𝑃
𝑑𝑡 = 𝑏 − 𝑚 𝑃 →	

𝑑𝑃
𝑃 = 𝑏 −𝑚 𝑑𝑡 → 	

𝑑𝑃
𝑃 = (𝑏 − 𝑚)𝑑𝑡 →	 

𝑙𝑛𝑃 = 𝑏 −𝑚 𝑡 + 𝑐	 → 𝑃 = 𝑒 567 '89 
Equation three 

Equation three is obtained by the integration of equation two and now expresses the 

population 𝑃 as a function of 𝑏 and 𝑚. 𝐶 is a constant which can be converted by 

writing the population size at time 0. Thereby the time-dependent term is zero and 

the equation can be rewritten as 

𝑃 = 𝑃;𝑒 567 ' 
Equation four 

In image three the dynamics of a population P0 = 100 at year 0 is plotted for a 

mortality rate of m = 0.05 per year and a birth rate b = 0.15 per year alone and for 

the total population P(birth-mort). The slope  
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 is added to the curve as a dashed 

line. This simple case has an analytical solution, but often more complex differential 

equations cannot be integrated using algebraic methods. In such cases computer 

programs are used to iteratively fit parameters to observed data and produce a 

numerical solution of the equation. Model parameters are often not constant. For 

example, mortality is age dependent. Younger individuals die more frequently than 

older. Parameters may also be density dependent, which means that the parameters 

are themselves again functions of the population. 



Image three: population dynamic with mortality and birth rates as independent processes 
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Modelling structured populations 

Populations can be divided in genders and different age classes. An example is shown 

in image four, depicting an age and sex structured model of a cattle population in 

Mongolia. x are female animals who give birth and y are males. 



Image four: age and sex structured demographic model of a cow population 
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Such models can be simulated using differential or difference equations. They can also 

be modelled using matrix models. We introduce here the principle of the Leslie matrix 

which is widely applied in population dynamics. We follow the excellent introduction 

on the subject of population ecology by Vandermeer and Goldberg (Vandermeer and 

Goldberg 2008, 280pp). 

The different classes of a population are no longer considered as a single value (scalar) 

but can be considered as a vector called population vector N. In this example, we 

consider three classes of female animals: young, subadult and adult (reproductive). 

This vector is multiplied by a projection matrix P. 



 

 

After a number of multiplications with itself, ie 20-30, the matrix reduces itself to 

diagonal values of 𝜆, called the dominant Eigenvalue of the projection matrix 𝑃. Since 

𝑃= is a diagonal matrix, we can replace it with 	𝜆=. 

𝑃= =
𝜆= 0 0
0 𝜆= 0
0 0 𝜆=

 

Equation five  

The population structure becomes stable; the proportions between the vector 

elements are constant. The stabilised population vector becomes the Eigenvector. We 

can standardise the Eigenvector to a length of 1, which is also called a normed 

Eigenvector. 
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